Trajectory Planning and Control of Bathy-drone: A **Drone Towing a Boat equipped with Sonar for Bathymetry Mapping**

Andres Pulido, Antonio Diaz, Andrew Ortega, Peter Ifju, Jane Shin

October, 2022

Artificial object inspection (pipes, bridges)

Source: Tennessee Department of Transportation

Survey of aquatic plants

3

Survey of marine life

Artificial object inspection (pipes, bridges)

Survey of aquatic plants

Survey of marine life

The Bathy-drone

- Autonomous drone towing a tethered
 boat equipped with a sonar
- Can be flown to the survey location
- No propulsion system on boat
- Can traveling at speeds of 0-15 mph
- The boat houses a low-cost
 commercial off-the-shelf recreational
 fish-finder and a downscan sonar

The Bathy-drone

Objective

- develop a G&C system that can handle the tethered dynamics such that the onboard sensor's field-of-view fully covers the region of interest
- Need to solve the following three components:

Boat Path Planning

Trajectory Tracking Control

SPARSE POINT CLOUD GENERATION AND **AUTOMATIC OBJECT DETECTION USING BATHY-DRONE**

The algorithm consists of two stages: (1) Dynamic model (2) Tracking Control (3) Trajectory Planning (4) Path Planning

Dynamic Model

Dynamics Model of Bathydrone

- The hydrodynamics model of the boat getting pulled by the tether can be derived by with a FBD
- Tension force is calculated by the pose difference between boat and drone

 z_I

Ow

Dynamics Model of Bathydrone

Adding the rigid and hydrodyna forces matrices

$$M = \begin{bmatrix} m - X_{\dot{u}} & 0 \\ 0 & m - Y_{\dot{v}} \\ 0 & mx_g - Y_{\dot{r}} \end{bmatrix}$$

$$C(v) = \begin{vmatrix} 0 & 0 \\ 0 & 0 \\ mv & r + mv - Y \cdot v - Y \cdot r & -mu + X \cdot y \\ 0 & 0 \\$$

d-body
amic
s:

$$M = \begin{bmatrix} m - X_{\dot{u}} & 0 & 0 \\ 0 & m - Y_{\dot{v}} & mx_g - Y_{\dot{r}} \\ 0 & mx_g - Y_{\dot{r}} & I_z - N_{\dot{r}} \end{bmatrix}$$

$$\psi = \begin{bmatrix} 0 & 0 & -mx_gr - mv + Y_{\dot{v}}v + Y_{\dot{r}}r \\ 0 & 0 & mu - X_{\dot{u}}u \\ mx_gr + mv - Y_{\dot{v}}v - Y_{\dot{r}}r & -mu + X_{\dot{u}}u & 0 \end{bmatrix}$$

$$D(v) = \begin{bmatrix} -X_{|u||u}|u| & 0 & 0 \\ 0 & -Y_{|v||v}|v| - Y_{|r||v}|r_{\psi}| & -Y_{|v||r}|v| - Y_{|r||r}|r_{\psi}| \\ 0 & -N_{|v||v}|v| - N_{|r||v}|r_{\psi}| & -N_{|v||r}|v| - N_{|r||r}|r_{\psi}| \end{bmatrix}$$

12

Tension Force applied to the Boat

- Applied in a determined application point r
- Tension direction is the position of the drone relative to the boat
- Magnitude measured experimentally

$$\frac{T}{||T||} = \frac{q - \eta + (J(\eta) \cdot \mathbf{r})}{||q - \eta + (J(\eta) \cdot \mathbf{r})||}$$
$$M = \mathbf{r} \times T(\mathbf{r}, \dot{\mathbf{q}})$$

On

Tension Force Measurement

• Force Gauge in line with the rope of the boat and record the force as well as boat and drone inertial measurements to make model tension

Tension Constraint

• We define an epsilon ϵ so that $l_r + \epsilon$ means drone is drone is going faster than vessel so we make drone velocity zero

• Additionally, l_r - ϵ means vessel is going faster than drone so we set the tension force to zero

Tension Constraint

• We define an epsilon ϵ so that $l_r + \epsilon$ means drone is drone is going faster than vessel so we make drone velocity zero

• Additionally, l_r - ϵ means vessel is going faster than drone so we set the tension force to zero

Gazebo Simulation

- ROS-based to implement communications in hardware
- Model (6DoF) hydrodynamics physics

Python Simulation

- Faster development and testing
- Model (3DoF) hydrodynamics physics

11x speed

18

Python Simulation

- Faster development and testing
- Model (3DoF) hydrodynamics physics

11x speed

Simulation Tuning

- Initial guess from Fossen Book [4]
- Tuned parameters to reduce error with data

Tracking Controls

Implemented PID control -> output is drone velocity

$$\mathbf{v_d} = \begin{bmatrix} \mathbf{v_x} \ \mathbf{v_y} \ \mathbf{0} \end{bmatrix}^T \qquad \mathbf{v_d} = K_p \mathbf{e}(t)$$

 $t) + K_i \int_0^t e(t)dt + K_d \frac{de(t)}{dt}$

- Mean Square **Error X:** 422.3
- Mean Square **Error Y:** 230.4

Tracking Controls

Implemented PID control -> output is drone velocity

- Mean Square **Error X:** 422.3
- Mean Square Error Y: 230.4

Drone Trajectory Planning

Trajectory Planning

Kinodynamic Rapidly-exploring Random Trees (RRT)

- Samples the state space of the robot and generates trajectories constrained by the dynamics to track the samples
- Chooses the trajectory with the least cost that achieves the goal

Allows for real time collision avoidance

Trajectory Planning

Kinodynamic Rapidly-exploring Random Trees (RRT)

- Samples the state space of the robot and generates trajectories constrained by the dynamics to track the samples
- Chooses the trajectory with the least cost that achieves the goal

• Allows for real time collision avoidance

Path Planning Algorithm

- Generates Boustrophedonic path that covers the maximum area rectangle that is inscribed in a convex polygon
- Parameters are based on sensor field of

Depth and horizontal distance

Future Work

- Implement controller that can better reduce tracking error. Candidates are adaptive, MPC, neural, RL
- Coverage path planning for non-convex polygons and polygons with islands
- Implement in hardware

References

[1] Melo, José and Aníbal Matos. "Survey on advances on terrain based navigation for autonomous underwater vehicles." Ocean Engineering 139 (2017): 250-264.

[2] K. Mizuno and A. Asada, "Three dimensional mapping of aquatic plants at shallow lakes using 1.8 MHz high-resolution acoustic imaging sonar and image processing technology," in 2014 IEEE International Ultrasonics Sym-posium, pp. 1384–1387, ISSN: 1051-0117.

[3] T. Maki, H. Horimoto, T. Ishihara, and K. Kofuji, "Tracking a sea turtle by an AUV with a multibeam imaging sonar: Toward robotic observation of marine life," vol. 18, no. 3, pp. 597-604.

[4] Fossen, T. I., Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley, 2011.

Thank you! Questions? Trajectory Planning and Control of Bathy-drone

Boat with Side-scan Sona

Trajectory Tracking Control

Static Experiment: Steady State

At steady state, the equation **no longer contains the acceleration**, so the unknowns are the linear and quadratic drag coefficients

One can solve it inverting the H matrix

$$\lambda = \begin{bmatrix} \tau_{\xi,1} - g_{\xi} \\ \tau_{\xi,2} - g_{\xi} \\ \vdots \\ \tau_{\xi,n} - g_{\xi} \end{bmatrix} \quad H = \begin{bmatrix} \xi_1 & \xi_1 | \xi_1 \\ \xi_2 & \xi_2 | \xi_2 \\ \vdots \\ \xi_n & \xi_n | \xi_n \end{bmatrix}$$

 $\lambda = H\Lambda$

$m_{\xi}\dot{\xi} + d_{\xi}\xi + g_{\xi} = \tau_{\xi}$

 $\begin{bmatrix} d_{\xi} \\ d_{\xi|\xi|} \end{bmatrix}$

Static Experiment: Steady State

At steady state, the equation **no longer contains the acceleration**, so the unknowns are the linear and quadratic drag coefficients

Tracking Controls

- **Goal:** Compute the control input to the system based on the reference signal
- Inputs:
 - Trajectory the drone needs to follow \bigcirc
 - State of the system (positions and velocities of the boat) \bigcirc
- **Outputs:**
 - Drone's velocity at the current time step \bigcirc
- **Approach:**
 - PID control with saturation \bigcirc

Trajectory Planning

- **Goal:** To compute the drone's trajectory such that the boat can follow the planned path
- **Inputs**:
 - Path planned for the boat \bigcirc
 - Dynamics model of Bathydrone \bigcirc
 - Control law for the drone (PID) \bigcirc

Outputs:

Drone's trajectory (or control inputs to the drone) \bigcirc

Approach:

Plan the drone's trajectory similar to the boat's path first, \bigcirc and revise the trajectory using the Gazebo simulation by iterations.

Path Planning Algorithm

- **Goal:** To cover the region of interest with sensor field-of-view
- Inputs:
 - The geometry of the area of interest (2D polygon), representing the Ο water surface
 - Sensor field-of-view geometry, with respect to the boat configuration \bigcirc
- **Outputs:**
 - A sequence of waypoints for the boat \bigcirc
- **Approach:**
 - Complete coverage path planning algorithms modified to \bigcirc incorporate the given sensor field-of-view geometry and sensor characteristics

Kinematics

Challenge: Weird tethered dynamics Solution:

 The drone position x, y and orientation θ will be constrained to move in a straight line or a minimum turning radius ρ, and will not be able to move backwards, which results in the formulation of a Dubins Path,

Trajectory Planning

- **Goal:** To compute the drone's trajectory such that the boat can follow the planned path
- **Inputs**:
 - Path planned for the boat \bigcirc
 - Dynamics model of Bathydrone \bigcirc
 - Control law for the drone (PID) \bigcirc

Outputs:

Drone's trajectory (or control inputs to the drone) \bigcirc

Approach:

Plan the drone's trajectory similar to the boat's path first, \bigcirc and revise the trajectory using the Gazebo simulation by iterations.

[4] [5]

