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● Autonomous drone towing a tethered 

boat equipped with a sonar

● Can be flown to the survey location

● No propulsion system on boat

● Can traveling at speeds of 0-15 mph

● The boat houses a low-cost 

commercial off-the-shelf recreational 

fish-finder and a downscan sonar

The Bathy-drone
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The Bathy-drone
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Objective

Boat Path Planning  Boat Trajectory Planning Trajectory Tracking Control
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● develop a G&C system that can handle the tethered dynamics such that the 
onboard sensor’s field-of-view fully covers the region of interest

● Need to solve the following three components:
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SPARSE POINT CLOUD GENERATION AND 
AUTOMATIC OBJECT DETECTION USING 
BATHY-DRONE

The algorithm consists of two stages:
 

(1) Dynamic model
(2) Tracking Control
(3) Trajectory Planning
(4) Path Planning
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Dynamic Model



Dynamics Model of Bathydrone

● The hydrodynamics model of the boat 

getting pulled by the tether can be 

derived by with a FBD 

● Tension force is calculated by the pose 

difference between boat and drone
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Mass matrices Coriolis matrices Drag matrix Tension Force of tether



Dynamics Model of Bathydrone

12

Mass matrices Coriolis matrices Drag matrix Tension Force of tether

Adding the rigid-body 
and hydrodynamic 
forces matrices:



Tension Force applied to the Boat

● Applied in a determined application point r 

● Tension direction is the position of the drone relative to the boat

● Magnitude measured experimentally
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Tension Force Measurement

● Force Gauge in line with the rope of the boat and record the force as well 
as boat and drone inertial measurements to make model tension

NOTE: Force sensor not to scale



Tension Constraint

● We define an epsilon      so that          

_   +      means drone is drone is 

going faster than vessel so we 

make drone velocity zero

● Additionally,       -      means 

vessel is going faster than drone 

so we set the tension force to zero
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Gazebo Simulation

● ROS-based to implement communications in 

hardware

● Model (6DoF) hydrodynamics physics 
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Python Simulation

● Faster development and testing

● Model (3DoF) hydrodynamics physics

1811x speed
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Simulation Tuning

● Initial guess from Fossen Book [4]

● Tuned parameters to reduce error with data
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Trajectory Tracking Control



Tracking Controls

● Implemented PID control -> output is drone velocity
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● Mean Square 
Error X:  422.3
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Drone Trajectory Planning



Trajectory Planning

Kinodynamic Rapidly-exploring Random 
Trees (RRT)

● Samples the state space of the robot 
and generates trajectories constrained 
by the dynamics to track the samples

● Chooses the trajectory with the least 
cost that achieves the goal
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● Allows for real time 
collision avoidance
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Boat Path Planning
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Path Planning Algorithm
● Generates Boustrophedonic path that 

covers the maximum area rectangle that is 
inscribed in a convex polygon

● Parameters are based on sensor field of 
view
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Depth and horizontal 
distance



Future Work

● Implement controller that can better reduce tracking error. Candidates 
are adaptive, MPC, neural, RL

● Coverage path planning for non-convex polygons and polygons with 
islands

● Implement in hardware
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Thank you! Questions?

Trajectory Planning and Control of Bathy-drone
Boat Path Planning Drone Trajectory Planning Trajectory Tracking Control
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Thank you!
Question?



Static Experiment: Steady State 

One can solve it inverting the H matrix

At steady state, the equation no longer contains the acceleration, so the unknowns 
are the linear and quadratic drag coefficients
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Tracking Controls

● Goal: Compute the control input to the system based on the reference signal
● Inputs:

○ Trajectory the drone needs to follow
○ State of the system (positions and velocities of the boat)

● Outputs:
○ Drone’s velocity at the current time step
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● Approach:
○ PID control with saturation 



Trajectory Planning

● Goal: To compute the drone’s trajectory such that the boat can follow the 
planned path

● Inputs:
○ Path planned for the boat
○ Dynamics model of Bathydrone
○ Control law for the drone (PID)

● Outputs:
○ Drone’s trajectory (or control inputs to the drone)
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● Approach:
○ Plan the drone’s trajectory similar to the boat’s path first, 

and revise the trajectory using the Gazebo simulation by 
iterations.



Path Planning Algorithm

● Goal: To cover the region of interest with sensor field-of-view
● Inputs:

○ The geometry of the area of interest (2D polygon), representing the 
water surface

○ Sensor field-of-view geometry, with respect to the boat configuration
● Outputs:

○ A sequence of waypoints for the boat
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● Approach:
○ Complete coverage path planning algorithms modified to 

incorporate the given sensor field-of-view geometry and 
sensor characteristics



Kinematics

Challenge: Weird tethered dynamics

Solution:
● The drone position x, y and orientation θ 

will be constrained to move in a straight 

line or a minimum turning radius ρ, 

and will not be able to move backwards, 

which results in the formulation of a 

Dubins Path,
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Trajectory Planning
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● Approach:
○ Plan the drone’s trajectory similar to the boat’s path first, 

and revise the trajectory using the Gazebo simulation by 
iterations.
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