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The Bathy-drone

e Autonomous drone towing a tethered

boat equipped with a sonar
e Can be flown to the survey location
e No propulsion system on boat
e Can traveling at speeds of 0-15 mph
e The boat houses a low-cost e

commercial off-the-shelf recreational

Boat with
Side-scan Sonar

fish-finder and a downscan sonar
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The Bathy-drone
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Objective

e develop a G&C system that can handle the tethered dynamics such that the
onboard sensor’s field-of-view fully covers the region of interest

e Need to solve the following three components:

Boat Path Planning Boat Trajectory Planning Trajectory Tracking Control




SPARSE POINT CLOUD GENERATION AND

AUTOMATIC OBJECT DETECTION USING
BATHY-DRONE

The algorithm consists of two stages:

(1) Dynamic model

(2) Tracking Control
(3) Trajectory Planning
(4) Path Planning
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Dynamics Model of Bathydrone

Ld -

il i
e The hydrodynamics model of the boat / tether 2
getting pulled by the tether can be " iw .n FB
derived by with a FBD OWT// gsw .
e Tension force is calculated by the pose R —— water surface

difference between boat and drone

———————————————————————————————————————————

/ Sonar
% Field of View

p/

Mass matrices Coriolis matrices Drag matrix  Tension Force of tether
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MRBV ~+ CRB(V)V —4 MAl./'r e CA(VT)VT -1 D(Vr)Vr —
S —————
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Dynamics Model of Bathydrone

Mass matrices Coriolis matrices Drag matrix  Tension Force of tether

A \ ™~

Mpgppr +Crp(V) v+ Mav +Cu(v )v + D(v )v =

iy il

rigid-body forces hydrodynamic forces

Fm = Xu 0 )
Adding the rigid-body _ v v
and hydrodynamic Sl m =Yy mxg =¥
forces matrices: 0 mxg =Yy I; =N
0 0 —mxgr —myv +Yyv + Y,;r-
C(v) = 0 0 mu — X, u
mxgr+mv —Yyv—Yir —mu+ Xuu 0
— XUl 0 0
D(v) = 0 _Ylvlv 4 _erlvlrt,lll _Ylvlr V _erlrlrt,bl
0 =Ny vl = Nipplrgl =Ny vl = Nippelry | e
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Tension Force applied to the Boat

e Applied in a determined application point r
e [ension direction is the position of the drone relative to the boat

e Magnitude measured experimentally

r _ q-n+U@) - r)
Tl llg —n+ () )|

M=rXxT(r,q)
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Tension Force Measurement

e Force Gauge in line with the rope of the boat and record the force as well
as boat and drone inertial measurements to make model tension

NOTE: Force sensor not to scale
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Tension Constraint

e We define an epsilon € so that

l,r + € means drone is drone is

going faster than vessel so we

make drone velocity zero

e Additionally, lr - € means

vessel Is going faster than drone

so we set the tension force to zero

15
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Tension Constraint

e We define an epsilon € so that ny

l,r + € means drone is drone is
going faster than vessel so we

make drone velocity zero

e Additionally, lr - € means

vessel Is going faster than drone

so we set the tension force to zero
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Gazebo Simulation

e ROS-based to implement communications in
hardware

e Model (6DoF) hydrodynamics physics

. I ———

TS YT Y T Trere
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Python Simulation

e Faster development and testing
e Model (3DoF) hydrodynamics physics

Evolution (Time: 78.4)
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Python Simulation

e Faster development and testing

e Model (3DoF) hydrodynamics physics

Y (m)

Evolution (Time: 78.4)
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Simulation Tuning

e |nitial guess from Fossen Book [4]

e [uned parameters to reduce error with data

U

--==- Boat Traj. in Sim,
- Boat Traj. in Exp.

® Start Point (Sim. and Exp.)
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Trajectory Tracking Control
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Tracking Controls

e |mplemented PID control -> output is drone velocity

de(t)
dt

4
Vd = [Vx Vy O]T va = K,e(t) +K,~/ e(t)dt + K,
0
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Tracking Controls

e |mplemented PID control -> output is drone velocity

Va = [vx Vy O]T
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Drone Trajectory Planning




' Qﬂ AH_a

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Trajectory Planning

| |
15 4 @ Start
@ sequence

Kinodynamic Rapidly-exploring Random o Goal
Trees (RRT) 10

-

e Samples the state space of the robot
and generates trajectories constrained
by the dynamics to track the samples

e C(Chooses the trajectory with the least -5
cost that achieves the goal

N9

~
= o
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—10

e Allows for real time -
collision avoidance

1.5 10.0 12.5 15.0

25




' c’(ﬂ AH_a

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Trajectory Planning

15.0

® Start

Kinodynamic Rapidly-exploring Random & sk
Trees (RRT) - \\ ¢ coal
e Samples the state space of the robot 7:5 /
and generates trajectories constrained
by the dynamics to track the samples X A
e Chooses the trajectory with the least ”
cost that achieves the goal 00 /
e Allows for real time {
collision avoidance 0 s 10 15 20

X(m)
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Boat Path Planning




Path Planning Algorithm T APRILab

e Generates Boustrophedonic path that 3;':;'; ca:d horizontal
covers the maximum area rectangle that is
Inscribed in a convex polygon

e Parameters are based on sensor field of
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Future Work b ATRILab

e |mplement controller that can better reduce tracking error. Candidates
are adaptive, MPC, neural, RL

e Coverage path planning for non-convex polygons and polygons with
Islands

e Implement in hardware
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Thank you! Questions?

Trajectory Planning and Control of Bathy-drone

Boat Path Planning Drone Trajectory Planning Trajectory Tracking Control
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Static Experiment: Steady State

At steady state, the equation no longer contains the acceleration, so the unknowns
are the linear and quadratic drag coefficients

'TREé + dff -+ gE = T{

One can solve it inverting the H matrix

A= HA
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Static Experiment: Steady State

At steady state, the equation no longer contains the acceleration, so the unknowns
are the linear and quadratic drag coefficients
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Tracking Controls

e Goal: Compute the control input to the system based on the reference signal
e Inputs:

o Trajectory the drone needs to follow

o State of the system (positions and velocities of the boat)
e Outputs:

o Drone’s velocity at the current time step

e Approach:
o PID control with saturation

35
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Trajectory Planning

e Goal: To compute the drone’s trajectory such that the boat can follow the
planned path
e I[nputs:
o Path planned for the boat
o Dynamics model of Bathydrone
o Control law for the drone (PID)

e Outputs:
o Drone’s trajectory (or control inputs to the drone)
e Approach:

o Plan the drone’s trajectory similar to the boat’s path first,
and revise the trajectory using the Gazebo simulation by

iterations.
36
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Path Planning Algorithm

e Goal: To cover the region of interest with sensor field-of-view
e I[nputs:
o The geometry of the area of interest (2D polygon), representing the
water surface
o Sensor field-of-view geometry, with respect to the boat configuration
e Outputs:
o A sequence of waypoints for the boat

e Approach:
o Complete coverage path planning algorithms modified to
incorporate the given sensor field-of-view geometry and
sensor characteristics




Kinematics

Challenge: Weird tethered dynamics

Solution:
e The drone position X, y and orientation 6

will be constrained to move in a straight
line or a minimum turning radius p,
and will not be able to move backwards,
which results in the formulation of a
Dubins Path,

AP
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K/p

_ab
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Trajectory Planning

e Goal: To compute the drone’s trajectory such that the boat can follow the
planned path
e I[nputs:
o Path planned for the boat
o Dynamics model of Bathydrone
o Control law for the drone (PID)

e Outputs:
o Drone’s trajectory (or control inputs to the drone)
e Approach:

o Plan the drone’s trajectory similar to the boat’s path first,
and revise the trajectory using the Gazebo simulation by

iterations.
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