Time and Cost-Efficient Bathymetric Mapping System using Sparse Point Cloud Generation and **Automatic Object Detection**

Andres Pulido, Ruoyao Qin, Antonio Diaz, Andrew Ortega, Peter Ifju, Jane Shin

October, 2022

Artificial object inspection (pipes, bridges)

Source: Tennessee Department of Transportation

 Artificial object inspection (pipes, bridges)

Survey of aquatic plants

Source: Tennessee Department of Transportation

[3]

Survey of marine life

Artificial object inspection (pipes, bridges)

Survey of aquatic plants

Source: Tennessee Department of Transportation

Survey of marine life

The Bathy-drone

- Autonomous drone towing a tethered boat equipped with various sensors
- Can be flown to the survey location
- No propulsion system on boat
- Can traveling at speeds of 0-15 mph
- The boat is equipped with a low-cost commercial off-the-shelf recreational fish-finder and a downscan sonar

Problem Statement

Inputs: GPS location, downscan sonar depth, and side-scan sonar image

Goals: Map the bathymetry of a low-depth body of water in a quick manner and at the same time, identify and localize objects of interest

APRILab

SPARSE POINT CLOUD GENERATION AND AUTOMATIC OBJECT DETECTION USING BATHY-DRONE

The algorithm consists of two stages:(1) Sparse point cloud generation(2) Automatic object detection

SPARSE POINT CLOUD GENERATION

Image Normalization

The intensity is scaled to be in between 0 and 1 in order to be able to generalize to other sonar sensors

Image Normalization

The intensity is scaled to be in between 0 and 1 in order to be able to generalize to other sonar sensors

First Return

The first return is the first reading of the water floor from each sonar beam

Image Normalization

The intensity is scaled to be in between 0 and 1 in order to be able to generalize to other sonar sensors

First Return

The first return is the first reading of the water floor from each sonar beam

- Thresholding
 algorithm used to
 find the first return
 pixel
- Side-scan sonar
 image strip with the
 first return colored.
 Red (starboard)
 and blue (port)

First Return

First return thresholding results

Side-scan Sonar Geometry

Depth and horizontal distance

 $z_i = r_{i,1} \cos(\alpha_2)$ $y_i = r_{i,1} \sin(\alpha_2)$

(pixels)

Linear mapping between distances and pixels

Pixel-distance Linear Mapping

Depth and horizontal distance

 $z_i = r_{i,1} \cos(\alpha_2)$ $y_i = r_{i,1} \sin(\alpha_2)$

 $PPD = \frac{\text{(pixels)}}{\text{(distance)}} = \frac{p}{d}$

Linear mapping between distances and pixels

Coordinate Transformation

Depth and horizontal distance

 $z_i = r_{i,1} \cos(\alpha_2)$ $y_i = r_{i,1} \sin(\alpha_2)$

PPD =

 $\frac{\text{(pixels)}}{\text{(distance)}} = \frac{p}{d}$ Linear mapping between distances and pixels **Linear mapping**

Coordinate Transformation

Depth and horizontal distance $z_i = r_{i,1} \cos(\alpha_2)$ $y_i = r_{i,1} \sin(\alpha_2)$

 $PPD = \frac{\text{(pixels)}}{\text{(distance)}} = \frac{p}{d}$

Linear mapping between distances and pixels

Sparse Point Cloud Generation Results

Point cloud data that are generated by down-scan and GPS data

[m] Z

Sparse Point cloud data that are generated by side-scan sonar return and geometry

AUTOMATIC OBJECT DETECTION

Automatic Object Detection Algorithm

You Only Look Once YOLO

Automatic Object Detection Algorithm

Unreal Engine Synthetic Images You Only Look Once (YOLO Neural Network)

Evaluation of the Automatic Object Detection Algorithm

Evaluation Metrics

Mean Average Precision: How good it is at classifying

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP$$

Intersection Over Union:

How good is the localization of the bounding box

$$IoU = \frac{(\text{Area of Overlap})}{(\text{Area of Union})}$$

Evaluation of the Automatic Object Detection Algorithm

Evaluation Metrics

Mean Average Precision:

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP$$

Intersection Over Union:

$$IoU = \frac{(\text{Area of Overlap})}{(\text{Area of Union})}$$

Results

• 239 images in the training set (12 real) • 59 images in the validation set (11 real) • 45 images in the test set (2 real)

Table I: Metrics Result

Metrics	Value
IoU	76.26%
mAP	93.17%

Object Detection Results

- Confidence level is high in synthetic images
- Confidence score drops in real images
- Drop could be mitigated by collecting more actual sonar images of objects with the sides-scan sonar

Synthetic Image

Real side-scan sonar image

References

[1] Melo, José and Aníbal Matos. "Survey on advances on terrain based navigation for autonomous underwater vehicles." Ocean Engineering 139 (2017): 250-264.

[2] K. Mizuno and A. Asada, "Three dimensional mapping of aquatic plants at shallow lakes using 1.8 MHz high-resolution acoustic imaging sonar and image processing technology," in 2014 IEEE International Ultrasonics Sym-posium, pp. 1384–1387, ISSN: 1051-0117.

[3] T. Maki, H. Horimoto, T. Ishihara, and K. Kofuji, "Tracking a sea turtle by an AUV with a multibeam imaging sonar: Toward robotic observation of marine life," vol. 18, no. 3, pp. 597–604.

Thank you! Questions? Sparse Point Cloud Algorithm and Automatic Object Detection

