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● Autonomous drone towing a tethered 

boat equipped with various sensors

● Can be flown to the survey location

● No propulsion system on boat

● Can traveling at speeds of 0-15 mph

● The boat is equipped with a low-cost 

commercial off-the-shelf recreational 

fish-finder and a downscan sonar

The Bathy-drone
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Inputs: GPS location, 

downscan sonar depth, and 
side-scan sonar image

Goals: Map the bathymetry 

of a low-depth body of water in a 
quick manner and at the same 
time, identify and localize 
objects of interest
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Problem Statement
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SPARSE POINT CLOUD GENERATION AND 
AUTOMATIC OBJECT DETECTION USING 
BATHY-DRONE

The algorithm consists of two stages:
 

(1) Sparse point cloud generation 
(2) Automatic object detection
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SPARSE POINT CLOUD GENERATION 
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Image Normalization

The intensity is 
scaled to be in 
between 0 and 1 in 
order to be able to 
generalize to other 
sonar sensors
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beam
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First Return 
● Thresholding 

algorithm used to 
find the first return 
pixel

● Side-scan sonar 
image strip with the 
first return colored. 
Red (starboard) 
and blue (port)

First return thresholding results

First ReturnFirst Return



Side-scan Sonar Geometry
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Depth and 
horizontal 
distance

Linear mapping 
between distances 
and pixels



Pixel-distance Linear Mapping
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Coordinate Transformation
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Point cloud data that are generated by 
down-scan and GPS data

Sparse Point cloud data that are generated by 
side-scan sonar return and geometry

Sparse Point Cloud Generation 
Results
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AUTOMATIC OBJECT DETECTION 



Automatic Object Detection 
Algorithm
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You Only Look Once
YOLO

Bounding Boxes



Automatic Object Detection 
Algorithm
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Unreal Engine 
Synthetic Images

You Only Look Once
(YOLO Neural Network) Bounding Boxes



Mean Average Precision: 
How good it is at classifying 

Evaluation of the Automatic Object 
Detection Algorithm
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Evaluation Metrics

Intersection Over Union:
How good is the localization of the 
bounding box



Mean Average Precision: 
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Evaluation of the Automatic Object 
Detection Algorithm
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Evaluation Metrics Results

Intersection Over Union:
How good is the localization of the 
bounding box

Table I: Metrics Result

● 239 images in the training set (12 real)
● 59 images in the validation set (11 real)
● 45 images in the test set (2 real)



Object Detection 
Results
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● Confidence level is high in 
synthetic images

● Confidence score drops in real 
images

● Drop could be mitigated by 
collecting more actual sonar 
images of objects with the 
sides-scan sonar

Synthetic Image
Real side-scan sonar image
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Thank you! Questions?

Sparse Point Cloud Algorithm and Automatic Object 
Detection
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Thank you!
Question?


